33 research outputs found

    First circumglobal assessment of Southern Hemisphere humpback whale mitochondrial genetic variation and implications for management

    Get PDF
    The description of genetic population structure over a species\u27 geographic range can provide insights into its evolutionary history and also support effective management efforts. Assessments for globally distributed species are rare, however, requiring significant international coordination and collaboration. The global distribution of demographically discrete populations for the humpback whale Megaptera novaeangliae is not fully known, hampering the definition of appropriate management units. Here, we present the first circumglobal assessment of mito - chondrial genetic population structure across the species\u27 range in the Southern Hemisphere and Arabian Sea. We combine new and existing data from the mitochondrial (mt)DNA control region that resulted in a 311 bp consensus sequence of the mtDNA control region for 3009 individuals sampled across 14 breeding stocks and subpopulations currently recognized by the International Whaling Commission. We assess genetic diversity and test for genetic differentiation and also estimate the magnitude and directionality of historic matrilineal gene flow between putative populations. Our results indicate that maternally directed site fidelity drives significant genetic population structure between breeding stocks within ocean basins. However, patterns of connectivity differ across the circumpolar range, possibly as a result of differences in the extent of longitudinal movements on feeding areas. The number of population comparisons observed to be significantly differentiated were found to diminish at the subpopulation scale when nucleotide differences were examined, indicating that more complex processes underlie genetic structure at this scale. It is crucial that these complexities and uncertainties are afforded greater consideration in management and regulatory efforts

    Population Structure of Humpback Whales from Their Breeding Grounds in the South Atlantic and Indian Oceans

    Get PDF
    Although humpback whales are among the best-studied of the large whales, population boundaries in the Southern Hemisphere (SH) have remained largely untested. We assess population structure of SH humpback whales using 1,527 samples collected from whales at fourteen sampling sites within the Southwestern and Southeastern Atlantic, the Southwestern Indian Ocean, and Northern Indian Ocean (Breeding Stocks A, B, C and X, respectively). Evaluation of mtDNA population structure and migration rates was carried out under different statistical frameworks. Using all genetic evidence, the results suggest significant degrees of population structure between all ocean basins, with the Southwestern and Northern Indian Ocean most differentiated from each other. Effective migration rates were highest between the Southeastern Atlantic and the Southwestern Indian Ocean, followed by rates within the Southeastern Atlantic, and the lowest between the Southwestern and Northern Indian Ocean. At finer scales, very low gene flow was detected between the two neighbouring sub-regions in the Southeastern Atlantic, compared to high gene flow for whales within the Southwestern Indian Ocean. Our genetic results support the current management designations proposed by the International Whaling Commission of Breeding Stocks A, B, C, and X as four strongly structured populations. The population structure patterns found in this study are likely to have been influenced by a combination of long-term maternally directed fidelity of migratory destinations, along with other ecological and oceanographic features in the region

    Premières données concernant l'inventaire des mammifères marins du parc national du Banc d'Arguin : Compte-rendu de mission en Mauritanie (16 janvier au 15 février 1995)

    Full text link
    Ce rapport de mission présente les travaux réalisés entre le 16 janvier et le 15 février 1995 sur et à propos des mammifères marins du parc national du Banc d'Arguin, Mauritanie. Ceux-ci ont porté sur : a) un travail de terrain : la collecte d'échantillons résultants d'échouages récents ou anciens le long du littoral continental et des îles du banc d'Arguin; l'observation aérienne à partir d'un avion de tourisme; l'observation depuis le bord à l'aide de véhicule ou à pied; l'observation à partir des embarcations traditionnelles imraguen à voile latine, les lanches; b) un travail au laboratoire : étiquetage et préparation des crânes et calvariums; traitement et analyse des contenus stomacaux. (Résumé d'auteur

    Hunting the hunter: using genetic profiling for improved management of shark attacks on humans

    No full text
    Abstract DNA evidence is routinely used to identify individual predators responsible for attacks on people and livestock in terrestrial settings. However, the use of transfer DNA techniques in aquatic environments20 for similar purposes is a recent development. To date, DNA barcoding has been used successfully to identify shark species depredating fish catches and biting surfboards and neoprene surfaces. In this study we demonstrate the successful DNA barcoding and fingerprinting of individual sharks from transfer DNA collected directly from the wounds of two shark bite victims. The successful use of DNA techniques to identify both species and specific individuals responsible for shark bites opens the door to selective removal of these individuals as an innovative shark bite risk management strategy. This selective approach would be a more effective, eco-responsible, cost-effective and ethical solution for vulnerable taxa than ongoing non-selective culling campaigns

    Integrative study of pandemic A/H1N1 influenza infections: design and methods of the CoPanFlu-France cohort

    No full text
    Abstract Background The risk of influenza infection depends on biological characteristics, individual or collective behaviors and the environmental context. The Cohorts for Pandemic Influenza (CoPanFlu) France study was set up in 2009 after the identification of the novel swine-origin A/H1N1 pandemic influenza virus. This cohort of 601 households (1450 subjects) representative for the general population aims at using an integrative approach to study the risk and characteristics of influenza infection as a complex combination of data collected from questionnaires regarding sociodemographic, medical, behavioral characteristics of subjects and indoor environment, using biological samples or environmental databases. Methods/Design Households were included between December 2009 and July 2010. The design of this study relies on systematic follow-up visits between influenza seasons and additional visits during influenza seasons, when an influenza-like illness is detected in a household via an active surveillance system. During systematic visits, a nurse collects individual and environmental data on questionnaires and obtains blood samples from all members of the household. When an influenza-like-illness is detected, a nurse visits the household three times during the 12 following days, and collects data on questionnaires regarding exposure and symptoms, and biological samples (including nasal swabs) from all subjects in the household. The end of the follow-up period is expected in fall 2012. Discussion The large amount of data collected throughout the follow-up will permit a multidisciplinary study of influenza infections. Additional data is being collected and analyzed in this ongoing cohort. The longitudinal analysis of these households will permit integrative analyses of complex phenomena such as individual, collective and environmental risk factors of infection, routes of transmission, or determinants of the immune response to infection or vaccination.</p

    Integrative study of pandemic A/H1N1 influenza infections: design and methods of the CoPanFlu-France cohort

    Get PDF
    BACKGROUND: The risk of influenza infection depends on biological characteristics, individual or collective behaviors and the environmental context. The Cohorts for Pandemic Influenza (CoPanFlu) France study was set up in 2009 after the identification of the novel swine-origin A/H1N1 pandemic influenza virus. This cohort of 601 households (1450 subjects) representative for the general population aims at using an integrative approach to study the risk and characteristics of influenza infection as a complex combination of data collected from questionnaires regarding sociodemographic, medical, behavioral characteristics of subjects and indoor environment, using biological samples or environmental databases. METHODS/DESIGN: Households were included between December 2009 and July 2010. The design of this study relies on systematic follow-up visits between influenza seasons and additional visits during influenza seasons, when an influenza-like illness is detected in a household via an active surveillance system. During systematic visits, a nurse collects individual and environmental data on questionnaires and obtains blood samples from all members of the household. When an influenza-like-illness is detected, a nurse visits the household three times during the 12 following days, and collects data on questionnaires regarding exposure and symptoms, and biological samples (including nasal swabs) from all subjects in the household. The end of the follow-up period is expected in fall 2012. DISCUSSION: The large amount of data collected throughout the follow-up will permit a multidisciplinary study of influenza infections. Additional data is being collected and analyzed in this ongoing cohort. The longitudinal analysis of these households will permit integrative analyses of complex phenomena such as individual, collective and environmental risk factors of infection, routes of transmission, or determinants of the immune response to infection or vaccination

    Factors associated with post-seasonal serological titer and risk factors for infection with the pandemic A/H1N1 virus in the French general population

    Get PDF
    The CoPanFlu-France cohort of households was set up in 2009 to study the risk factors for infection by the pandemic influenza virus (H1N1pdm) in the French general population. The authors developed an integrative data-driven approach to identify individual, collective and environmental factors associated with the post-seasonal serological H1N1pdm geometric mean titer, and derived a nested case-control analysis to identify risk factors for infection during the first season. This analysis included 1377 subjects (601 households). The GMT for the general population was 47.1 (95% confidence interval (CI): 45.1, 49.2). According to a multivariable analysis, pandemic vaccination, seasonal vaccination in 2009, recent history of influenza-like illness, asthma, chronic obstructive pulmonary disease, social contacts at school and use of public transports by the local population were associated with a higher GMT, whereas history of smoking was associated with a lower GMT. Additionally, young age at inclusion and risk perception of exposure to the virus at work were identified as possible risk factors, whereas presence of an air humidifier in the living room was a possible protective factor. These findings will be interpreted in light of the longitudinal analyses of this ongoing cohort
    corecore